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ABSTRACT

The recent increase in availability of high-performance computing (HPC) resources in South Africa

allowed the development of an ocean–atmosphere coupled general circulation model (OAGCM). The

ECHAM4.5-South African Weather Service (SAWS) Modular Oceanic Model version 3 (MOM3-SA) is the

first OAGCM to be developed in Africa for seasonal climate prediction. This model employs an initialization

strategy that is different fromprevious versions of themodel that coupled the same atmosphere and oceanmodels.

Evaluation of hindcasts performed with the model revealed that the OAGCM is successful in capturing the

development andmaturity of El Ni~no and LaNi~na episodes up to 8months ahead. Amodel intercomparison also

indicated that the ECHAM4.5-MOM3-SA has skill levels for the Ni~no-3.4 region SST comparable with other

coupled models administered by international centers. Further analysis of the coupled model revealed that La

Ni~na events are more skillfully discriminated than El Ni~no events. However, as is typical for OAGCM, themodel

skill was generally found to decay faster during the spring barrier.

The analysis also showed that the coupled model has useful skill up to several-months lead time when

predicting the equatorial Indian Ocean dipole (IOD) during the period spanning between the middle of austral

spring and the start of the summer seasons, which reaches its peak in November. The weakness of the model in

other seasonswasmainly causedby thewestern segment of the dipole, which eventually contaminates the dipole

mode index (DMI). The model is also able to forecast the anomalous upper air circulations, particularly in the

equatorial belt, and surface air temperature in the Southern African region as opposed to precipitation.

1. Introduction

The most physically realistic and computationally

expensive method of modeling the climate system is to

model all components of the system believed to be rel-

evant at the time scales of interest. At the seasonal lead

time, for instance, the minimum level of complexity re-

quired is a model that coupled the atmosphere and the

ocean (e.g., Stockdale et al. 1998; Palmer et al. 2004;

DeWitt 2005; Graham et al. 2005; Gu�er�emy et al. 2005;

Saha et al. 2006).

The South African modeling community has over the

past decade or so dedicated a large amount of resources

to utilize atmospheric general circulationmodels (AGCMs)
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as operational seasonal forecast tools (Landman et al.

2012). These models have all been developed outside of

South Africa but have been used extensively for oper-

ational seasonal forecast production as well as for re-

search by many institutions including, inter alia, the

South African Weather Service [Center for Ocean–

Land–Atmosphere (COLA) model with T30 resolution

(Kirtman et al. 1997) and ECHAM4.5 (Roeckner et al.

1996)], the Universities of Cape Town [third Hadley

Centre Atmosphere Model version P (HadAM3P);

Pope et al. 2000] and the Council for Scientific and In-

dustrial Research (CCAM;McGregor 1996). Due to the

enormous computational resources required to develop

and run an operational forecast system based on coupled

models, their engagement for real-time forecasts in

South Africa has not previously been tractable. In fact,

only a few institutions are designated as global pro-

ducing centers by the World Meteorological Organiza-

tion (WMO) for long-range forecasts using coupled

models for operational seasonal forecasting (Stockdale

et al. 2009).

More recently, however, the ECHAM4.5 AGCM

(Roeckner et al. 1996) has been coupled with the Geo-

physical Fluid Dynamics Laboratory (GFDL) Modular

Oceanic Model version 3 (MOM3; Pacanowski and

Griffes 1998) at the South African Weather Service

(SAWS), referred to here as the ECHAM4.5-MOM3-

SAocean–atmosphere coupled general circulationmodel

(OAGCM). In addition, this coupled model employs an

initialization strategy that capitalizes on best available

information (Balmaseda and Anderson 2009). The use of

real-time atmospheric states for initialization becomes

possible with an atmospheric initial condition interface

introduced in the model configuration. This interface is

based on the vertical interpolation scheme originally

suggested by Majewski (1985) that employs the in-

tegration of the hydrostatic equation but with numerical

adjustment (I. Kirchner 2001, personal communication)

coded in a software package referred to as Interpolation

of European Centre for Medium-Range Weather Fore-

casts (ECMWF) Reanalysis Data (INTERA; available

online at http://wekuw.met.fu-berlin.de/;IngoKirchner/

nudging/nudging/software/index.html). We used this

software to develop the interface that makes the

OAGCM’s configuration uniquely different from pre-

vious systems involving the ECHAM4.5 AGCM cou-

pled with the MOM3 OGCM (e.g., DeWitt 2005,

hereafter D05). Our motivation for this work is twofold.

First, it has been demonstrated that Southern African

midsummer rainfall variability has been shown to be

sufficiently predictable by using the coupled model out-

puts such as from Development of a European Multi-

model Ensemble System for Seasonal to Interannual

Prediction (DEMETER) project (Palmer et al. 2004)

and the International Research Institute for Climate and

Society (IRI), especially during El Ni~no and La Ni~na

seasons (Landman et al. 2012; Landman and Beraki

2012). As noted above, coupled models are largely as-

sumed or hypothesized to represent the state of the art

of seasonal forecasting. In fact, it has been conclusively

shown through the DEMETER project that coupled

forecasting systems can predict both the evolution of

SSTs and atmospheric conditions at enhanced levels of

skill. This fact, indeed, stimulates the need to use cou-

pled models in South Africa and renders them ideal

candidates for seasonal climate prediction.

Second, with the inception of the Centre for High

Performance for Computing (CHPC), the computational

resources in South Africa has grown exponentially, con-

sequently creating an environment for computationally

intensive modeling research locally, which would have

been impossible otherwise. This recent advances in com-

puting infrastructures compounded with the support from

international institutions such as the IRI in developing the

coupled model described have paved the way for utilizing

and for further development of such state-of-the-art cou-

pledmodels for seasonal forecast production and research.

The aim of this paper is therefore to describe and eval-

uate the ECHAM4.5-MOM3-SA OAGCM developed

in partnership between South Africa and IRI.

The remainder of the paper is organized as follows: In

section 2, we describe the coupled model. The meth-

odology of generating the hindcasts along with the ini-

tialization strategy is explained in section 3. In section 4,

we evaluate the performance of the coupled model as

a seasonal forecasting tool. A summary and conclusions

are given in section 5.

2. Coupled model description

The ECHAM4.5 AGCM (Roeckner et al. 1996) is

coupled with theGFDLMOM3 (Pacanowski andGriffes

1998) using the Multiple Program and Multiple Data

(MPMD) fully parallelized coupler paradigm (Komori

et al. 2008). Essentially, this means that the atmosphere

and ocean models are the same as standalone versions

except for changes needed to handle the passing of data

in between. Each model is treated as an independent set

of message passing interface (MPI) parallel processes.

In contrast, D05 employed the Ocean Atmosphere Sea

Ice Soil (OASIS) coupling software (Terray et al. 1999)

produced by the European Centre for Research and Ad-

vanced Training in Scientific Computation (CERFACS)

to couple the models despite that the principle on which

the exchange of information between the AGCM and

OGCM remains similar. The atmosphere and ocean
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models along with the coupling scheme are described

next.

a. Atmospheric model

The AGCM is originally evolved from the spectral

weather forecast model of the ECMWF (Simmons et al.

1989). Numerous modifications (in dynamics and phys-

ics) have been applied to this model at the Max Planck

Institute for Meteorology (MPI) to make it suitable for

climate predictions and it is the fourth generation in

a series. This has been shown to have promising seasonal

predictive capability for the Southern Africa region

(Landman et al. 2009).

The prognostic variables are represented by truncated

series of spherical harmonics with triangular truncation

at wavenumber 42 (T42) except for the moisture and

trace substances. Vertically 19 unevenly spaced hybrid-

sigma layers are used. The model employs the vertical

coordinate system of Simmons and Burridge (1981) and

a semi-Lagrangian transport scheme of Williamson and

Rasch (1994) for water vapor, cloud water, and trace

substances. It uses the Longwave radiation of Fouquart

and Bonnel (1980) and shortwave radiation of Morcrette

et al. (1986). Cumulus convection is parameterized using

the mass flux scheme of Tiedtke (1989) but incorporates

the modifications introduced by Nordeng (1994). The

turbulent surface fluxes are calculated from Monin–

Obukhov similarity theory (Louis 1979) but, different

from its predecessors, a higher-order closure scheme

(Brinkop and Roeckner 1995) is used to simulate the

vertical diffusion of heat, momentum, moisture, and

cloud water. Horizontal diffusion is computed using the

Laursen and Eliasen (1989) scheme. The orographic

gravity waves are represented by the wave drag pa-

rameterization due to Miller et al. (1989). We refer the

reader to Roeckner et al. (1996) for a complete model

description.

b. Ocean model

The ocean model MOM3 is a finite-difference treat-

ment of the primitive equations of motion using the

Boussinesq and hydrostatic approximations in spherical

coordinates. Spatially it covers the global ocean ranges

between 748S and 658N. The coastline and bottom to-

pography are realistic but the minimum and maximum

ocean depths are assumed to be 100 and 6000m, respec-

tively. The artificial high-latitude meridional boundaries

are impermeable and insulating. The model has a 0.58
uniform zonal resolution, with a variable meridional

resolution of 0.58 between 308S and 108N, gradually in-

creasing to 1.58 at 308N and fixed at 1.58 in the extra-

tropics. There are 25 layers in the vertical with 17 layers

in the upper levels between 7.5 and 450m. The vertical

mixing scheme is the nonlocal K-profile parameteriza-

tion (KPP) scheme of Large et al. (1994). The horizontal

mixing of tracers and momentum is Laplacian. The

momentummixing uses the space–time-dependent scheme

of Smagorinsky (1963) and the tracer mixing uses Redi

(1982) diffusion along withGent andMcWilliams (1990)

quasi-adiabatic stirring.

c. Coupling procedure

The two GCMs exchange information once per sim-

ulation day. The AGCM feeds the OGCM with heat,

momentum, freshwater, and surface solar flux. The

OGCM, in turn, feeds the AGCM sea surface temper-

ature (SST) information. The coupling strategy used in

this configuration is anomaly coupling on the AGCM

side and full-field coupling on the OGCM side, meaning

that the anomalous atmospheric fluxes are superimposed

on the observed climatology. This procedure is the same

as followed by Ji et al. (1998). The climatological AGCM

fluxes are computed using a long-term climatology ob-

tained from the uncoupled AGCM forced with observed

SST. The climatological AGCM fluxes are subtracted

from the fluxes computed by the AGCM component

model in the coupled model to form anomalies. In ad-

dition, since the ocean model lacks a sea ice model, the

OGCM SST is relaxed toward the observed climatol-

ogy in high latitudes to suppress the generation of

spurious ice.

3. Retroactive forecasts design

The OAGCM uses initial states of the atmosphere,

land surface, and ocean. While the use of the ocean and

land surface states is straightforward, the atmospheric

state needs cautious treatment prior to initializing the

coupled model. In this process, the model is initialized

with the National Centers for Environmental Prediction

(NCEP) daily atmospheric initial states, interpolated

into the AGCM’s vertical and horizontal resolution in

a manner that respects numerical stability as explained

above. The atmospheric initial conditions in D05, how-

ever, were taken from simulations made with the

(ECHAM4.5) AGCM forced by the temperature from

the uppermost layer of the ODA product, which is

equivalent to the (MOM3) OGCM SST. Despite that

the atmospheric initial conditions become less impor-

tant as the lead time increases (Goddard et al. 2001),

it is worth emphasizing that the fast development of

both computational technology and observational

network (particularly with the advent of meteorologi-

cal satellite information) has an immense contribution

on the improvement in forecast quality. Theoretically,

improving the predictability of the mean state of the
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atmosphere, to a large extent, is expected to arise from

the improvement of, apart from dynamical and physical

processes, the optimal estimate of the state of the climate

system (Balmaseda and Anderson 2009; Doblas-Reyes

et al. 2013). The use of realistic atmospheric and land

surface (soil moisture) states in the ECHAM4.5-MOM3-

SA configuration is, therefore, viewed from this per-

spective. The contribution of this initialization strat-

egy to the overall forecast quality improvement is

underway using different simulations of the ECHAM4.5

AGCM only.

The OAGCM is initialized using slightly different

atmospheric initial states to build an ensemble pre-

diction system. The technique is, however, applied only

to the atmospheric state (section 3a), meaning that the

OAGCM is constrained with a fixed ocean state for all

ensemble members that fall within the proximity of the

forecast date (in our case the 4th of each month). The

uncertainties that arise from the initial conditions are

accounted for by taking 10 consecutive daily atmo-

spheric states back from the forecast date in each month

and year. For the November hindcasts, for example, the

atmospheric initial conditions cover the period from

26October to 4November for 28 yr starting from 1982 to

2009. This approach is slightly different from the Cli-

mate Forecasting System (CFS) of NCEP (Saha et al.

2006), which considers pentad initial conditions. Each

retrospective forecast is of 9-month length. The pro-

cedures of generating the various initial states are de-

scribed below.

a. Atmospheric initial states

The atmospheric initial conditions are obtained from

the NCEP–Department of Energy (DOE) Atmospheric

Model Intercomparison Project (AMIP) reanalysis

(R-2) dataset (Kanamitsu et al. 2002), except that the

lower layer atmospheric temperature is assimilated from

the upper layer of the GFDL ocean data assimilation

(ODA) system in order to minimize the imbalance be-

tween the (near equatorial) upper-ocean mass field and

wind stress (D05). The NCEP–DOE atmospheric states

are transformed to the horizontal and vertical resolution

(T42L19) of the ECHAM4.5 AGCM as noted in section

2a. In general, the process involves 1) conversion of

pressure to a hybrid-sigma coordinate system (Simmons

and Burridge 1981), 2) computation of vorticity and di-

vergence from meridional and zonal wind components,

and 3) transformation of grid to spectral space. The latter

component is applied on prognostic variables: that is,

temperature, vorticity, and divergence only as the specific

humidity needs to remain in the corresponding Gaussian

grid resolution.

The vertical coordinate system transformation re-

quires careful treatment to ensure that an initial state is

produced that is numerically and gravitationally stable.

The ECHAM4.5 AGCMwas found to be sensitive to be

numerically unstable when a linear or nonlinear in-

terpolation scheme without adjustment was employed.

The difficulties associated with the vertical interpolation

were noted in various previous studies (e.g., Majewski

1985; Shen et al. 1986; Gaertner and Castro 1996). The

horizontal truncation may also potentially introduce

imbalances presumably due to normal mode variations

between the NCEP–DOE and the model. To minimize

the problem, the vertical interpolation was conducted in

a manner that preserves the structure of the vertical

stratification of the atmosphere. The scheme is based on

the vertical integration of the hydrostatic equation with

adjustment (I. Kirchner 2001, personal communication).

The interpolation scheme is originally suggested by

Majewski (1985) and is also widely used for conversion

betweenmodels fields of different resolution in theHigh

Resolution Limited Area Model (HIRLAM; Und�en

et al. 2002) community.

b. Preparation of land surface state

The AGCM land surface model is initialized with

observed soil moisture states. The soil moisture is taken

from the Climate Prediction Center (CPC) monthly

mean dataset (Fan and Van den Dool 2004). The CPC

product is interpolated to the AGCM resolution using

a bilinear interpolation procedure. The AGCM uses the

simple biosphere model (Sellers et al. 1986) and soil

hydrology parameterization scheme suggested byD€umenil

and Todini (1992). Many studies highlighted the role of

soil moisture initialization on the skill of climate models

(e.g., Walker and Rowntree 1977; Koster et al. 2004;

Conil et al. 2009; Douville 2010). However, it is beyond

the scope of this work to assess the sensitivity of the

OAGCM to soil moisture initialization alone. The goal

is rather to optimize the forecasting system for pre-

dictive skill in an operational context.

c. Preparation of ocean state

The ocean initial conditions are taken fromODAsystem

produced at the GFDL that employs an optimum in-

terpolation scheme (Derber and Rosati 1989). The ODA

uses expendable bathythermograph (XBT) data for the

subsurface and relaxes the SST to observed values with

a 5-day time scale. The use of the product is done by the

horizontal and vertical interpolation procedure de-

scribed by D05. The procedure reportedly leads to a

reasonable balanced ocean initial state for use in making

SST forecasts.
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4. Performance statistics

The OAGCM’s deterministic and probabilistic skill

has been explored for different months and seasons

along with several lead times.

The verification is based on 3360 (12months3 28 yr3
10 ensemble members) hindcasts each consisting of

9-month integrations. The model runs are grouped ac-

cording to the forecast date (if they were issued) to a set

of hindcasts with 10 ensemble members. Each ensemble

set mimics a set of operational forecasts issued on the

4th of eachmonth starting from 1982 to 2009. Themodel

bias in the mean annual cycle was removed from the

model forecasts prior to comparing the statistics: that is,

computing the anomalies of the model about its own

drifted climatology as a function of different initializa-

tion time and lead months (Wang et al. 2002; Schneider

et al. 2003; D05).

FIG. 1. OAGCMskill for the SST forecasts in theNi~no-3.4 asmeasuredwithAC as a function

of lead time (vertical) and target (horizontal) months based on the monthly mean SST over the

period 1982–2009.

FIG. 2. OAGCM overall accuracy predicting the Ni~no-3.4 SST. The RMSE is computed based

on the monthly mean SST over the period 1982–2009.
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The model surface and upper air data were compared

against observed data compiled from different sources.

For the surface variables, rainfall, and air temperatures,

the observed datasets used for comparison were the

CPCMergedAnalysis of Precipitation (CMAP; Xie and

Arkin 1997) and Climate Research Unit (CRU; New

et al. 2000). The SST forecasts were compared against

optimum interpolation SST (OISST) version 2 (Reynolds

et al. 2002). For the upper air analysis, the NCEP–DOE

R-2 (Kanamitsu et al. 2002) was used as a proxy for

observation.

a. Deterministic forecast verification

Although operational seasonal forecasts are com-

monly issued probabilistically, it is also often informative

to investigate their deterministic forecast performance.

FIG. 3. The time evolution of ENSO as simulated by the ECHAM4.5-MOM3-SA

OAGCM.
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It is worth noting first that no cross-validation is con-

ducted on the OAGCM SST hindcasts, meaning that

all the verification scores are computed directly from

hindcasts as in D05. The most commonly used measures

of skill in predicting the SST of the equatorial Pacific

Ocean are anomaly correlation (AC) and root-mean-

square error (RMSE). Figure 1 shows the AC of the

Ni~no-3.4 basin (58S–58N, 1708–1208W) for 12 initial

condition (IC) months and 9-month lead-time in-

tegrations. The model is successful in predicting the

Ni~no-3.4 SSTs well ahead of time and in most instances

the ACs exceed 0.6 up to an 8-month lead time for the

ICs considered here. An AC of 0.5–0.6 is commonly

used as an indicator for the skilful forecast of the

equatorial Pacific SST in the forecasting literature (e.g.,

Kirtman 2003; Schneider et al. 2003; D05). The

ECHAM4.5-MOM3-SA struggles to maintain the defined

skill threshold at higher lead times (.6-month lead time)

for May, June, and July target months. This result is con-

sistent with the NCEPCFS (Saha et al. 2006). This sudden

decay in skill near April is commonly referred to as the

spring barrier in the literature and as Saha et al. (2006)

suggested the spring barrier renders the austral winter

months, most notably July forecasts, to be more difficult.

The overall accuracy of model SST forecasts for the

Ni~no-3.4 region is also assessed using the RMSE. Our

model has very low error concentrations for nearly all IC

cases considered here but with errors increasing as a

function of lead time (Fig. 2). The model error is con-

fined within the range of 0.18–0.58C. At increased lead

times (at about 5-month or more lead times), such as for

October, November, December, and January ICs, the

model has relatively large biases.

The time evolution of observed versus model simu-

lated the El Ni~no–Southern Oscillation (ENSO) phe-

nomenon is shown in Fig. 3. The SST indices are area

average anomalies for the Ni~no-3.4 region similar to the

index used for the computation of the AC (Fig. 1) or

RMSE (Fig. 2) but for seasons instead of months. Ac-

cording to Fig. 3 the model agrees very well with ob-

servation for different lead times for the austral summer

[December–February (DJF)] and austral spring

[September–November (SON)]. The other seasons are

relatively less skilful and uncertain specifically during

the austral winter [June–August (JJA)] as expected due

to the spring barrier noted earlier. The skill enhance-

ment shown in Fig. 1, to the large extent, is the contri-

bution of the model’s ability to capture the amplitude of

FIG. 4. Near-global SST skill (AC) of the OAGCM during the start of the austral summer (December) for 6-month

lead time (0–5). Only values statistically significant at 95% are shown.
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the El Ni~no phases (Fig. 3) accurately except during the

early 1990s. However, the model seems to overestimate

the annual amplitude or interannual variability of La

Ni~na phases. This tendency is, however, not as striking

when assessing the probabilistic skill of the model when

the skill is decomposed in to various categories (see

section 3b).

The global skill distribution of the ECHAM4.5-MOM3-

SA for the start of the austral summer (December) at 0–5-

month lead time is shown in Fig. 4. The central and eastern

equatorial Pacific region remains the area of highest

predictability and is associated with coherent spatial

skills statistically significant at the 95% level except at

zero-month lead time (Fig. 4a) when a similar skill is also

found in other ocean basins. During austral winter, the

model forecast skill is similar during austral summer

except that the highest skill area is also expanded toward

the western part of the equatorial Pacific region. The

magnitude of the skill is, however, relatively weakened

toward the west as a function of lead time (Fig. 5). The

austral autumn and spring seasons (not shown) reveal

a great deal of similarities with the austral summer and

winter, respectively.

Model intercomparison is also a useful tool and

commonly practiced in the area of model evaluation

(e.g., Landman and Mason 2001; Schneider et al. 2003;

Alves et al. 2004; D05; Saha et al. 2006). The SST pre-

diction for the Ni~no-3.4 area is usually used as a bench-

marking for this type of comparison since ENSO is the

most predictable component of the climate system (Fig. 9).

For this purpose, weused theDEMETERmodels (Palmer

et al. 2004), the CFS coupled model (Saha et al. 2006),

D05, and a statistical model [multimodel system (MMS);

Beraki et al. 2012] to investigate whether our model has

a reasonable skill level compared to other similar models.

The data for theDEMETERmodels are only available for

1981–2001, whereas the other models hindcasts presented

here are from 1982 to 2009. These differences may pose

some difficulties in making objective or fair judgment. For

this reason, we restrict the hindcast period to 1982–2001

for this model intercomparison purpose. In addition, no

interpolation was performed on the individual models

rather the observed SST is interpolated to each model’s

resolution tominimize the noise thatmight be introduced

as a result. TheDEMETEROAGCMs considered in this

comparison are composed of the Met Office (UKMO;

Pope et al. 2000), M�et�eo-France (MF; D�equ�e 2001), and

ECMWF (Gregory et al. 2000).

The skill and accuracy of the different models com-

puted from their hindcasts initialized in November and

FIG. 5. As in Fig. 4, but for the austral winter (June).
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February are illustrated in Figs. 6 and 7, respectively.

The choice of the November and February ICs were

dictated by the availability of the DEMETER models’

hindcast data. In the November IC, our coupled model

demonstrates a competitive skill with most of the

models considered here. The ECHAM4.5-MOM3-SA

(denoted as ‘‘SCM’’) maintains its AC at or above 0.8

across all lead times; the skill for ECMWF, CFS and

FIG. 6. Anomaly correlation by various predictionmethods ofmonthlymean for theNi~no-3.4
forecasts as a function of different lead months (horizontal). The skill scores are based on the

(a) November and (b) February initialized hindcasts. The ECHAM4.5-MOM3-SA is denoted

by ‘‘SCM’’; MMS refers to CCA-based statistical multimodel ENSO prediction system.

FIG. 7. RMSE by various prediction methods of monthly mean for the Ni~no-3.4 forecasts as

a function of different lead months (horizontal). The level of bias in each model computed

using the (a) November and (b) February initialized hindcasts. The ECHAM4.5-MOM3-SA

(as in Fig. 6) is compared with the local CCA-based empirical model, DEMETER coupled

models (UKMO, ECMWF, and MF), and NCEP CFS coupled model.
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MMS starts decaying faster at 5-month lead time

(Fig. 6a). In the February IC (Fig. 6b), all models tend to

show similar tendency at all lead times to that of the

November IC. The exception is that the skill level in

February initialized runs is generally low. The ECMWF,

CFS, andMMS decay faster relative to the other models

at longer lead times.

It is imperative to accompany the AC with a measure

of accuracy or bias because the AC is not sensitive to

bias since a biased forecasting system can still produce

goodAC. The RMSE computed for eachmodel forecast

set against theOISST is shown in Fig. 7. In theNovember

IC (Fig. 7a), the ECHAM4.5-MOM3-SA achieves a

comparable level of accuracy relative to the DEMETER

models where MF is found to have the highest skill. The

MMS (specifically at the start) and CFS (as the lead time

increases) show a gradual growth in error. In the February

IC case (Fig. 7b), errors grow the fastest with increasing

lead time for the ECHAM4.5-MOM3-SA (1–3-month

lead).

TheMMS shows a tendency of greater error growth in

the context of ENSO forecasts at the start of the austral

summer even though it demonstrates a robust perfor-

mance in the February initialized ENSO forecasts.

ECHAM4.5-MOM3-SA performance is nearly compa-

rable with the OAGCMs, which are performing best

in the cases we considered except for the relative error

growth noted earlier.

The skill of the ECHAM4.5-MOM3-SA OAGCM in

predicting ENSO during the austral summer is an im-

provement over D05 for the first four lead months (0–3;

Figs. 6a, 7a) and then tends to decay faster after that. In

addition, our coupled model simulated the amplitude of

ENSO more realistically than D05 (Fig. 9) when the

amplitude of the seasonal variation of ENSO peaks

(Fig. 8). Notwithstanding, in the February initialized

hindcasts (Figs. 6b, 7b), D05 did well compared to our

model. The result suggested that the impact of the

initialization strategy apparently becomes noticeable

when ENSO becomes active (Fig. 8). Generally, the two

models, however, demonstrated comparable skill levels

particularly in the context of rainfall and Indian Ocean

dipole (IOD) forecasts.

Previous studies highlighted the role of the coupling

of the equatorial Indian Ocean basin with Southern

African rainfall variability (e.g., Reason 1999, 2002;

Reason and Mulenga 1999; Washington and Preston

2006). It was hypothesized that this coupling phenome-

non is found to drive the Southern African extratropical

climate system through the influence of large-scale

rainfall bearing systems such as the relative annual po-

sition of the intertropical convergence zone (ITCZ), the

South Atlantic anticyclone, and the midlatitude west-

erlies (Reason et al. 2006). However, the SST prediction

over the equatorial Indian Ocean has been found to be

more complex and challenging. In fact, state-of-the-art

coupled climate models are most often unable to repli-

cate the observed evolving SST patterns over this ocean

region (Collins et al. 2004; Landman et al. 2009). It is

therefore not surprising that our model also had diffi-

culty in simulating the observed SST patterns over the

equatorial Indian Ocean subdomain. The model shows

some skill in simulating the SSTs over the western

equatorial Indian Ocean off the coast of the African

subcontinent except during austral autumn. However,

the model manages to capture the eastern part of the

equatorial Indian Ocean SST patterns near the coast of

northwestern Australia starting from the middle of

austral spring toward the beginning of the austral sum-

mer season. To substantiate this notion, we conducted

model intercomparison to investigate themodels’ ability

to simulate the equatorial IOD using the dipole mode

index (DMI; Saji et al. 1999). TheDMI is the SST anomaly

difference between thewestern (108S–108N, 508–708E) and
eastern (108S–08, 908–1108E) tropical Indian Ocean and

commonly used to measure the strength and phases of the

IOD(Saji et al. 1999). Themodel intercomparison analysis

FIG. 8. Seasonal cycle of the standard deviation of anomalies of

(a) the DMI and (b) the Ni~no-3.4 index at various lead months (as

shown in the inset). Anomalies are computed by removing the

respective climatological seasonal cycle for each lead time and

observations.
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conducted during active period of IOD and ENSO

(Fig. 8; Zhao and Hendon 2009) suggested that all the

coupled models considered demonstrated marginal skill

relative to ENSO despite that IOD is more predictable

than rainfall (Fig. 9). Most of the coupled models

overestimated or underestimated the amplitude of the

IOD except for the MF coupled model. Notwithstand-

ing, all models showed comparable level of skill, in the

range of 0.8–0.9 AC, in predicting IOD for austral spring

(SON) at 0-month lead.

The seasonal variation of the IOD fully develops

during the austral spring (SON; Fig. 8; Saji et al. 1999;

Zhao and Hendon 2009). The model generally under-

estimated the amplitude of the seasonal variation of

IODparticularly for the first few leadmonths as opposed

to the model’s tendency to overestimate the amplitude of

the seasonal variation of ENSO.Notwithstanding, the best

performance of the model closely followed the observed

peak of the seasonal cycle of the standard deviation of

the IOD. Figure 10 shows the predicted time evolution

of the IOD during SON and October–December (OND)

at different lead times (1–4 months) over the verification

period of 1982–2009 using a box–whisker representation.

The model was found to be skilful during the SON and

OND seasons. For most cases the observations (green

asterisks) are dressed with the ensemble spread and tend

to cluster within the same categories as delineated by

the historical 25% and 75% percentiles of both the ob-

servation (green line) and ensemble mean (blue line).

However, there are cases where observations lie outside

the ensemble spread specifically during the 1990s. These

outliers might be significantly contributed to the model’s

tendency to damp the amplitude of seasonal variation of

the IOD (Fig. 8). This suggests that there is still room for

further improvement by simply increasing the ensemble

size of the OAGCM integrations. In addition, the model

performance during the same period but for individual

months measured using the AC and RMSE is also shown

in Table 1. The model demonstrates good skill (statisti-

cally significant at 5% confidence level) up to 5-month

lead time, which attains its peak during November.

Nonetheless, the model tends to show the smallest error

FIG. 9. Taylor diagram (Taylor 2001) by various prediction methods (as shown in the inset)

based on the ensemble mean for Southern Oscillation index (SOI; asterisks), IOD (solid cir-

cles), and rainfall totals for the tropical region between 208S and 208N (open circles) and

Southern Africa south of the equator (crosses). The standard deviation is normalized by the

respective observation (see text). ECHAM4.5-MOM3-SA is denoted by ‘‘SCM.’’
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growth during December presumably because of the

subsidence of the IOD maturity or variation.

We also extended our analysis on the upper air fields

of the model using the mean-square skill score (MSSS;

Murphy 1988). This score can easily be computed using

the mean absolute error (MAE) or mean-square error

(MSE), where the latter is employed here. Usually the

reference (control) forecasts are provided by either the

climatology or persistence of the variable of interest

(Wilks 2006). The skill score therefore represents im-

provements in the forecast skill relative to the reference.

The MSSS has a value of one for perfect forecasts. The

MSSS could be positive (negative) when the accuracy of

the forecast is superior (inferior) to the accuracy of the

reference forecast. When the MSE of the reference and

forecast are equal, the MSSS becomes zero, which im-

plies no improvement in the forecast system relative to

the reference forecast. The spatial distribution of global

actual skills (MSSS) of the OAGCM during the austral

summer for geopotential height (GH) is shown in

Fig. 11. The skill score is computed from the ensemble

mean of the model against the NCEP–DOE. On a syn-

optic scale, it is evident that the model, initialized in

November, performs well at simulating the 850- and

500-hPaGH over the equatorial region, specifically over

the latter. Of particular interest is that the OAGCM

outscores the forecast of climatology farther south, par-

ticularly on those key ocean basins that are recognized

modes of atmospheric variability such as the SouthPacific

wave (SPW) train (Mo and Ghil 1987) and the southern

annular mode (SAM).

The OAGCM’s performance in predicting wind

components was also evaluated based on the ensemble

mean integrations. Figure 12 shows the equatorial zonal

and meridional wind anomaly (208S–208N) skill during

the austral summer (DJF) at various forecast lead times

(seasons) as a function of pressure levels computed against

the NCEP–DOE. The result suggested that the model

showed some skill on the lower tropospheric and upper

FIG. 10. Time series of IOD index from the middle of austral spring to the start of summer at 2-, 5-, and 8-month leads for the period of

1982–2009. TheOAGCMensemble spread is shown by the box–whisker representation with 25%and 75%of the ensemblemembers. The

blue dots and green stars represent the ensemble mean and OISST, respectively. The blue (ensemble mean) and green (OISST) lines

around the zero black line also depict the historical quartiles based on 28 yr of the index.

TABLE 1. OACGM skill and error growth in predicting the IOD

for different lead months during late autumn and the beginning of

summer seasons as measured by AC and RMSE. The skill scores

were computed against observed DMI computed from the OISST.

Lead

AC RMSE

Oct Nov Dec Oct Nov Dec

0 94.51* 92.75* 72.70* 0.3645 0.2225 0.3472

1 77.20* 83.21* 61.63* 0.5526 0.4102 0.2692

2 74.27* 77.29* 44.95* 0.6036 0.4054 0.3054

3 50.23* 77.61* 54.35* 0.6894 0.4179 0.2844

4 50.95* 59.99* 47.09* 0.6852 0.4767 0.3214

5 31.36 56.76* 47.84* 0.7651 0.4887 0.3134

6 14.77 45.63* 44.60* 0.8535 0.5325 0.3255

7 10.35 38.19 28.26 0.8844 0.5712 0.3733

8 12.40 38.22 38.53 0.8485 0.6142 0.3518

*AC is statistically significant at 95% level.
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stratospheric tropical flow as opposed to the extra-

tropical flow. The analysis further revealed that the

zonal wind appears to be more predicable than the

meridional flow, which might be attributed to ENSO

forcing. Saha et al. (2006) demonstrated similar skill on

the stratospheric zonal flow based on the CFS coupled

model. Our coupled model is, however, struggling to

predict the upper airflow between the upper tropo-

sphere and lower stratosphere. Mathole et al. (2014)

recently identified similar deficiency in the ECHAM4.5-

MOM3-SAOAGCM. They indicated that theOAGCM

was unable to simulate the observed pole ward migra-

tion of the eddy-driven southern extratropical jet stream

and lower stratospheric cooling, which is presumably

attributed to the lack of proper stratospheric ozone

prescription, anthropogenic forcings, and coarse vertical

resolution.

b. Probabilistic forecast verification

Evaluating the model’s ability to predict ENSO pha-

ses probabilistically provides additional insight into the

models ability to capture important modes of variability.

The model testing is done here in a setting that mimics

a true operational forecasting approach. First we present

typical examples of forecast plumes for the 1982 and

1988 El Ni~no and La Ni~na events, respectively, as illus-

trated inFig. 13, and it can be seen that the coupledmodel

successfully captures the development and maturity of

these two typical ENSO episodes.

In a probabilistic verification framework for seasonal

forecasting, the observed and predicted fields are often

separated into three categories of above-normal, near-

normal, and below-normal conditions based on predefined

thresholds emanated from model history (climatology).

FIG. 11. Actual skill of November initialized OAGCM integrations for (left) 850- and (right) 500-hPa geo-

potential heights. (a),(b) November–January (NDJ; 0-month lead time); (c),(d) DJF (1-month lead time); and

(e),(f) JFM (2-month lead time). The MSSS is computed against the NCEP–DOE upper air climate data as

a proxy for observation and climatological forecast as a reference. The PSA is indicated with an asterisk on the

three locations (H1, H2, and H3; Yuan and Li 2008).
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Despite that ENSO (anomalous and neutral) is a rela-

tively more predictable component of the climate sys-

tem, results from the near-normal category are omitted

here because of the low skill generally associated with

this category in other variables such as surface temper-

ature and rainfall (Van den Dool and Toth 1991). In

addition, the signature of neutral ENSO is not as in-

fluential as anomalous ENSO when used as a predictor

in a statistical remapping framework (e.g., Landman and

Beraki 2012). This categorization results in a 2 3 2 con-

tingency table. The contingency tables are subsequently

used to compute the reliability diagrams, relative oper-

ating characteristics (ROC) curves, area underneath of

the ROC curve, and other commonly used measures of

probabilistic skill such as the Brier (skill) score.

The ROC is a highly flexible method for representing

the quality of dichotomous, categorical, and probabi-

listic forecasts (Mason and Graham 2002). It is derived

from signal detection theory (SDT), which was first in-

troduced to the meteorological community by Mason

(1982). The ROC curve (Swets 1973; Mason 1982;

Harvey et al. 1992) is derived from a contingency table

(Wilks 2006) in which the hit rate and the false-alarm

rate are compared. In probabilistic forecasting system, a

warning can be issued when the forecast for a predefined

event exceeds some threshold (Mason 1979). Optimally,

FIG. 12. Anomaly correlation of zonal (a) and meridional (b) mean wind anomalies of the

equatorial region (208S–208N) at various lead times as a function of pressure levels.
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the ROC curve is desired to lie toward the uppermost

left corner of a ROC diagram. The diagonal line rep-

resents no skill and a curve lays below the no skill line

implies that the forecasting system is not better than

guesswork. The area under the ROC curve is computed

numerically and normalized to constitute what is re-

ferred to as a ROC score. The ROC score of a skillful

forecasting system always exceeds the 0.5 limit.

It is worthwhile mentioning, however, that the ROC is

not sensitive to biases (systematic or nonsystematic;

Murphy 1988) that may be embedded in the forecast

system. This implies that a biased forecast can still produce

a good ROC curve. It is useful to view the ROC as

measure of potential skill and is often accompanied by a

corresponding reliability diagrams. Reliability diagram

is a type of conditional distribution that shows, given

each forecast probability interval, how frequently ob-

servation actually ended up in one or another category

(Hartmann et al. 2002). The reliability diagram is con-

structed from the computation of the hit rate for the set

of forecasts for individual probability bins separately

and then plotted against the corresponding forecast

probabilities. The most reliable forecasting systems have

curves in close proximity of the diagonal line of perfect

reliability.

The ROC and reliability diagrams curves were cal-

culated for each forecast lead time. Figure 14 shows

diagrams for three lead months (1-, 3-, and 6-month lead

times) to describe the model performance. The corre-

sponding frequency histograms showing the relative

frequency of use of the forecast bins, which are also

referred to as ‘‘sharpness diagrams’’ for both below and

above normal are shown on the top-left and bottom-

right corners of each plot, respectively. These histo-

grams reveal how strongly and frequently the issued

forecast probabilities depart from the climatological

probabilities. At a 1-month lead time, themodel exhibits

good reliability to predict both the cold and warm pha-

ses of ENSO during late austral summer (December),

although it shows a tendency of over forecast relative to

the latter. It suggests that the quality of forecast man-

ifested in the ROC curves is attainable as the forecasting

system is unbiased where the strength is more robust

for the cold phase category. At a 3-month lead time, the

model reveals fairly high reliability to predict both cold

and warm phases at lower probability bins, but gradually

diverges to be over- and under-forecast for warmer and

colder categories at higher probabilities, respectively.

The model still has good reliability at a 6-month lead

time in spite of both categories being overpredicted.

During the start of the austral winter (Fig. 15), themodel

exhibits high reliability to predict both the cold and

warm phases of ENSO at 1- and 3-month lead times.

Notwithstanding, at a 6-month lead time the reliability

of the model becomes weak. The deterioration of skill at

this lead time and longer is also captured in the AC

(Fig. 1) and is presumably attributed as suggested earlier

to the spring barrier. It is more evident from both Figs.

14 and 15 that, in the Ni~no-3.4 region, cold events are

more skilfully predicted compared to warm events.

These results are similar to that found in previous ENSO

predictability studies (Kirtman 2003; D05).

The global distributions of ROC scores demonstrated

by the OAGCM during the austral summer based on

the November hindcasts predicting years of wet and dry

FIG. 13. ECHAM4.5-MOM3-SA forecast plume of Ni~no-3.4 SST

anomalies (K) initialized from the 10 NCEP–DOE atmospheric

initial states on 4 Apr for (top) 1982 and (bottom) 1988. All

members are shown in dot lines, the ensemble mean is solid line

marked with closed circle, and the observation is in black line

marked with triangle as shown in the legend.
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conditions are shown in Fig. 16.Only those scores that are

statistically significant at 95%are shown. The significance

test is conducted using a variant of the Mann–Whitney

nonparametric procedure that explicitly accounts for

variance adjustment caused by incidents of ties (Mason

and Graham 2002; Wilks 2006). It is apparent that the

OAGCM is successful in discriminating below- and

above-normal rainfall conditions over the larger part of

the globe. Maximum skill is obtained on the equatorial

Pacific region across all lead times. Similar skill pat-

terns are demonstrated for the larger part of Southern

Africa ranging fromROC sores of predominantly 0.6 to

patches of 0.8. Similarly, the global surface tempera-

ture ROC score distribution of the coupled model is

further demonstrated in Fig. 17. This verification result

suggests that the model is able to significantly dis-

criminate cold and warm episodes over the larger part

of the globe. The performance of the model is more

consistent and stronger in predicting surface tempera-

tures than rainfall probabilistically, a result also found

in other models (Barnston and Smith 1996; Colman and

Davey 1999). These global results also support what has

FIG. 14. (left) ROC curve and (right) reliability diagrams of ECHAM4.5-MOM3-SA probabilistic forecasts that

show the warming and cooling phases of ENSO for different lead times of February as shown on the title of each plot.

The letters B andA in the legend denote LaNi~na andEl Ni~no, respectively. The histograms on the top-left (cold) and

bottom-right (warm) corners of each reliability diagram plots imply the frequency of forecast usage in different bins.
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been discussed above with respect to the reliability di-

agrams for the Southern Africa region in the sense that

the model is more reliable in providing cold and warm

events as opposed to dry and wet.

Figure 18 shows the reliability diagrams obtained

from the different initialized model hindcasts for un-

usually warm and cold events in the vicinity of the austral

summer (DJF) at 1–3-month lead times. The sharpness

diagram both for below- and above-normal are also

shown on the top-left and bottom-right corners of each

plot, respectively. The model is reliably discriminating

warm and cold episodes with virtually no skill deter-

ioration as a function of lead time. At higher probabil-

ities, however, the model exhibits a slight tendency of

overconfidence despite the model being increasingly

conservative in providing warnings at higher probability

bins as shown in the sharpness diagrams. The model also

demonstrates similar skill levels during the January–

March and the November–January seasons. Notwith-

standing, the OAGCM has generally shown a tendency

of issuing warnings of certain events while such events

(dry or wet conditions; Fig. 19) are less frequently ob-

served in the Southern African region during the austral

summer. The skill of the OAGCM in predicting surface

temperature probabilistically, as one may expect, is by

far more reliable than the rainfall forecasts where the

model generally suffers from overconfidence. Never-

theless, the weakness is presumably attributed to the

FIG. 15. As in Fig. 14, but with June as the target month.
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fact that the model is not equally successful across the

whole of Southern Africa, as shown in Fig. 16. Besides,

the overconfidence bias is apparently caused by rainfall

conditions of higher seasonal totals (right tail of the

scatter diagram; Fig. 19). The reliability and scatter

analysis used identical inputs and both considered the

contribution of each grid point and each ensemble mem-

ber (no spatial averagewas applied). Previous studies (e.g.,

Landman et al. 2012; Landman and Beraki 2012) have

similarly suggested that the most common slope of the

reliability curves found for seasonal rainfall forecasts for

the region are shallower than the diagonal line.

5. Summary and conclusions

Coupled climate models represent the state of the art

of seasonal forecasting, which inherently renders them

to be exceptionally convenient for seasonal climate pre-

diction purposes. Notwithstanding, owing to the enormous

computational needs of and complexity associated with

OAGCMs, their engagement for seasonal forecasts in

South Africa was initially not considered feasible par-

ticularly in an operational environment.

The substantial augmentation of the computational

resources in South Africa due to the resent CHPC in-

tervention brought new hope to South African climate

modelers. Founded mainly on this motivation, we attemp-

ted to explore the advantage of coupled climate models

in the area of research and seasonal forecast production.

The emergence of theECHAM4.5-MOM3-SAOAGCM

in SouthAfrica is the first ever locally developed coupled

climate model that is configured for seasonal forecasts

production. Moreover, it employs an initialization strat-

egy that capitalizes on the best available atmospheric

information, thusmaking the forecasting system uniquely

different from previous coupled models using the same

atmosphere and ocean models.

The model evaluation in the context of ENSO fore-

cast showed that the OAGCM was plausibly skillful in

most instances in capturing the development andmaturity

FIG. 16. Global distribution of ROC area for seasonal rainfall totals (mm) skill of the OAGCM during the austral

summer fromNDJ (0-month lead) to JFM (2-month lead) both for (a)–(c) below- and (d)–(f) above-normal categories.

Only statistically significant values at the 95% level shades are shown.
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of El Ni~no and La Ni~na episodes up to an 8-month lead

time. The result was also complemented by low error

concentrations confined within the range of 0.1–0.5

RMSE. In a probabilistic sense, the analysis revealed

that La Ni~na events are more skillfully discriminated

than La Ni~no events by the model. However, the model

skill was generally found to decay faster during the spring

barrier.

The model intercomparison revealed that the

ECHAM4.5-MOM3-SAOAGCM demonstrated a com-

parable level of skill for the Ni~no-3.4 region SST forecast

with state-of-the-art coupled models administered by

other international centers such as the UKMO, MF,

ECMWF, and NCEP CFS and the IRI and locally de-

veloped canonical correlation analysis (CCA)-based

statistical model (MMS). The initialization strategy in-

troduced in the ECHAM4.5-MOM3-SA configuration

found to be beneficial when the seasonal variation of

ENSO attains its peak as opposed to the D05 version.

This result is rather encouraging and further implies that

the proposed forecasting system is robust.

Further verification analysis confirmed that the cou-

pledmodel demonstrated remarkable skill up to several-

month lead times in predicting the equatorial IOD

during the period spanning between the middle of aus-

tral spring and the start of the main summer seasons,

which reaches its peak in November. This may suggest

that IOD is more predictable when its seasonal variation

becomes strong. The investigation also unveiled that

the weakness of the model in other seasons was mainly

caused by the western segment of the dipole, which

eventually contaminates the DMI although the cause of

the deficiency is not clear. The complexity of the equa-

torial IOD prediction reportedly challenges coupled

climate models, even though observational and theo-

retical studies conclusively demonstrated the role of

the dipole structure in modulating Southern Africa and

Australian rainfall variability at the seasonal time scale.

ECHAM4.5-MOM3-SA was also found to be suc-

cessful in simulating the observed upper air circulation

as represented by the 850- and 500-hPa GH in the equa-

torial belt with a pronounced skill on the latter. Farther

FIG. 17. As in Fig. 16, but for 2-m surface temperatures (K).
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south, the model was fairly skilful on those key ocean

basins such as SPW and SAM, despite the fact that the

model was mostly unable to outscore a climatological

forecast. In addition, the model is fairly skillful in sim-

ulating the lower tropospheric and upper stratospheric

equatorial flow during the austral summer. Notwith-

standing, the zonal wind appeared to bemore predicable

than the meridional wind that might be attributed to

ENSO forcing.

The OAGCM probabilistic forecast for the austral

summer season for rainfall totals and surface air tem-

peratures was found to be informative and fairly useful.

The model was evidently successful in discriminating

below- and above-normal rainfall conditions over the

larger part of the globe where the signal is more pro-

nounced on the equatorial Pacific region. Similarly, the

verification result indicated that the model was able to

discriminate cold and warm episodes. Nonetheless, as

onemay expect, the performance of themodel wasmore

consistent and more skilful in predicting surface air

temperatures than rainfall totals probabilistically. The

findings is further supported, at least for the Southern

African window, by the fact that the model is more re-

liable in issuing forecasts of cold or warm seasons as

opposed to dry or wet. Probabilistic rainfall forecasts are

biased toward overconfidence.

The advent of fully coupled ocean–atmosphere

models (e.g., Stockdale et al. 1998) promised improved

seasonal forecasts. However, in spite of the promise of

enhanced seasonal forecast skill, coupled models have

not been administered in South Africa for operational

seasonal forecast production because these models ef-

fectively require double the computing resources of

their atmosphere-only counterparts. Recent advances in

computing infrastructures in South Africa and the sup-

port from international institutions such as the IRI in

developing the coupled model described here have

paved the way for utilizing and for further development

FIG. 18. Reliability diagrams of the OAGCM in predicting below- and above-normal surface air temperature conditions

during the three rolling seasons centered around the austral summer season for the Southern African region (south of the equator).

The letters B and A in the legend denote cold and warm events, respectively. The frequency of utilization the different probability

bins for both below- and above-normal categories are also shown on the top-left and bottom-left corners of each diagram,

respectively.
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of such state-of-the-art coupled models for seasonal

forecast production and research.
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CORRIGENDUM

ASMEROM F. BERAKI

South African Weather Service, and Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria,

South Africa

DAVID G. DEWITT*

International Research Institute for Climate and Society, Columbia University, Palisades, New York

WILLEM A. LANDMAN

Council for Scientific and Industrial Research, Natural Resources and the Environment, and Department of Geography, Geoinformatics

and Meteorology, University of Pretoria, Pretoria, South Africa

COBUS OLIVIER

South African Weather Service, and Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria,

South Africa

(Manuscript received and in final form 6 May 2014)

In Beraki et al. (2014), the second sentence in the abstract needs to be clarified to avoid

ambiguity regarding the model discussed. The correct sentence should read: ‘‘The South

African Weather Service (SAWS) OAGCM that coupled the ECHAM4.5 AGCM and

Modular Oceanic Model version 3 (MOM3) is the first OAGCM to be developed in Africa

for seasonal climate prediction.’’
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